Newcastle disease virus vectors co-expressing HA and NA proteins protect poultry against highly pathogenic H7N8 avian influenza virus.

Ishita Roy Chowdhury, Sai Goutham Reddy Yeddula, Brian G. Pierce, Siba K. Samal, Shin-Hee Kim and George A. Belov

Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, MD, USA

Introduction

- Highly pathogenic avian influenza (HPAI) viruses cause devastating disease in domestic poultry and are economically-important pathogens worldwide.
- The HA protein is responsible for virus attachment to the host cell and is the major target of humoral immune response.
- The NA protein plays a role in release and spread of progeny virions by removing sialic acid from glycoproteins. The NA antibody has shown to play a role in reducing clinical signs and shedding.
- Disadvantage of currently recombinant NDV-vectored vaccines is their maternal antibodies against poultry.

Objectives

To develop improved recombinant NDV-vectored vaccines against HPAIV in poultry.

Experiments and Results

1. Three groups of day-old broiler chicks and turkeys were intranasally injected with 10^6 pfu of chimeric NDV/HA for prime immunization. One group was injected with same dose of PBS as control.
2. At day 14, serum samples were collected (post-prime) and they were boost immunized with LaSota/HA and LaSota/HA-NA.
3. After two weeks post-boost, serum samples were collected, and they were challenged with 10^6 pfu of HPAIV/VT/IN/1403/2016.
4. Both the broiler chickens and turkeys observed 7 days for clinical signs and mortality.

Animal Experiments

Fig 1: Generation of Chimeric and LaSota- vectored vaccine candidates

Infectious viruses were generated using NDV reverse genetics

Fig 2A: Western blot: Expression of H7/HA and NN8 proteins by NDV vectors. The HA protein in cell lysates was detected by using monoclonal antibodies against H7 HA protein: i)A/Netherlands/219/2003 (H7N7): HA-a. ii)A/Anhui/1/2013 (H7N9): HA-b. Expression of NA protein in cell lysates detected by a polyclonal antibody against NN8 protein. B: Immunofluorescence analysis. C. Incorporation of HA and NA proteins into NDV particles purified through 30% sucrose cushion was evaluated by Western blot analysis.

Fig 3: Growth kinetics of prime (A) and boost (B) vaccine candidates

Fig 4: Immunization scheme: Scheme is same in chickens and turkeys. Prime immunization :chimeric NDV/HA for all the chickens and turkeys. 2 weeks post-prime, both chickens and turkeys were divided into two groups for boost immunization: Group 1: LaSota/HA, Group 2: LaSota/HA-NA.

Fig 5: HI assay done for Vector-specific immunity: HI titer of unimmunized chickens at 2 weeks and 4 weeks old age also detected. Here we compared the HI titers of both immunized and unimmunized chickens simultaneously. LaSota- specific immunity (5A, red bar) and chimeric-NDV specific immunity for group 1 and group 2 (5B, blue bar) are shown in respect with control chickens. Fig5C: H7- specific immunity measured for both groups of broiler chickens.

Fig 6: Each immunization group of chickens was challenged with H7N8 HPAIV. Mortality (A) and shedding of challenge virus (B) in broiler chickens were evaluated. All unimmunized chickens (control, a total of 5 birds) showed viral shedding.

Fig 7: Immunogenicity of NDV vectored vaccines in turkeys. Each group of turkeys was intranasally immunized with chimeric NDV/HA and then boost immunized with LaSota/HA (Group 1) or LaSota/HA-NA (Group 2). Virus-specific antibodies were determined by hemagglutination inhibition assay using chimeric NDV (prime) and LaSota and chimeric NDV (boost) (A) and H7N8 (C). Significant difference in chimeric NDV-specific immunity between 2-week-old and 4-week-old (blue bar) broiler chickens. “**” Significant difference in H7-specific immunity between post-prime and post-boost chickens.

Fig 8: Mortality (A) and shedding of challenge virus (B) in turkeys. All unimmunized turkeys (a total of 5 birds) showed viral shedding.

Conclusions

- It may possible that vaccination strategy using both chimeric NDV and LaSota vectors coexpressing HA and NA proteins may enhance the protective efficacy in turkeys.
- NDV vector can be a good system in expressing the consens sequence of HA protein.
- In case of broiler chickens, our heterologous prime and boost immunization provided 100% protection from mortality and virus shedding.
- It may be possible in broiler chickens, only single immunization with our prime vaccine candidate chimeric NDV/HA can give full protection against H7HPAIV.
- The protective efficacy of our vaccine candidates was less efficient in turkeys.
- Turkeys were better protected by boosting with the LaSota vector co-expressing the HA and NA proteins (LaSota/HA-NA) than the LaSota vector expressing only the HA protein (LaSota/HA).

Fig 7. Immunogenicity of NDV vectored vaccines in turkeys. Each group of turkeys was intranasally immunized with chimeric NDV/HA and then boost immunized with LaSota/HA (Group 1) or LaSota/HA-NA (Group 2). Virus-specific antibodies were determined by hemagglutination inhibition assay using chimeric NDV (prime) and LaSota and chimeric NDV (boost) (A) and H7N8 (C). Significant difference in chimeric NDV-specific immunity between 2-week-old and 4-week-old (blue bar) broiler chickens. “**” Significant difference in H7-specific immunity between post-prime and post-boost chickens.

Fig 8: Mortality (A) and shedding of challenge virus (B) in turkeys. All unimmunized turkeys (a total of 5 birds) showed viral shedding.

It may possible that vaccination strategy using both chimeric NDV and LaSota vectors coexpressing HA and NA proteins may enhance the protective efficacy in turkeys.

NDV vector can be a good system in expressing the consens sequence of HA protein.

In case of broiler chickens, our heterologous prime and boost immunization provided 100% protection from mortality and virus shedding.

It may be possible in broiler chickens, only single immunization with our prime vaccine candidate chimeric NDV/HA can give full protection against H7HPAIV.

The protective efficacy of our vaccine candidates was less efficient in turkeys.

Turkeys were better protected by boosting with the LaSota vector co-expressing the HA and NA proteins (LaSota/HA-NA) than the LaSota vector expressing only the HA protein (LaSota/HA).